
Higher-Order Patterns in Replicated Data Types
Adriaan Leijnse

adriaan.leijnse@gmail.com
INESC TEC

Paulo Sérgio Almeida
psa@di.uminho.pt

INESC TEC & University of Minho

Carlos Baquero
cbm@di.uminho.pt

INESC TEC & University of Minho

ABSTRACT

The design of Conflict-free Replicated Data Types tradition-
ally requires implementing new designs from scratch to meet
a desired behavior. Although there are composition rules that
can guide the process, there has not been a lot of work ex-
plaining how existing data types relate to each other, nor
work that factors out common patterns. To bring clarity to
the field we explain underlying patterns that are common to
flags, sets, and registers. The identified patterns are succinct
and composable, which gives them the power to explain both
current designs and open up the space for new ones.

ACM Reference Format:

Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero. 2019.
Higher-Order Patterns in Replicated Data Types. In Proceedings of
ACM Conference (Conference’17).ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Conflict-free replicated data types (CRDTs) are concurrent
variants of sequential data types that specify the outcome of
conflicting concurrent operations. For operations on sets, pri-
ority can be given to either adds or removes, and for flags the
same needs to happen for concurrent enabling and disabling
of the flag. Consider the following definitions (notation is de-
tailed in Section 2) for the add-wins set (1) and enable-wins
flag (2) CRDTs:

AWSet(E) = { a | e ∈ E ∧ e .o = ⟨add,a⟩

∧ ∄e ′ ∈ E · e ′.o = ⟨rmv,a⟩ ∧ e ≺ e ′ } (1)
EWFlag(E) = ∃e ∈ E · e .o = enable

∧ ∄e ′ ∈ E · e ′.o = disable ∧ e ≺ e ′ (2)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Why do these two definitions look so similar? Could we
define one in terms of the other?

In this paper we want to argue that yes, we can, and that
replicated data types in fact contain many examples of simple
data types which can be used to define more complex ones.
We hope that bringing these patterns to light will help solve
an inefficiency of the current state of the art, namely that
we tend to define and implement each CRDT from scratch
despite many CRDTs sharing such structural patterns [1–4].

In order to illustrate our approach we first provide a brief
intuition for CRDTs in Section 2. In the same section we also
introduce the formalism used above, which gives each CRDT
a simple denotation in the form of a function from a set of
events registered by a replica in a distributed system to the
current value of a CRDT for that replica.
Using this formalism we then illustrate how we can ab-

stract over patterns in traditional definitions of CRDTs by
carefully restructuring the latter. Reworking the definitions
gives us higher-order denotations, that is, denotations which
are functions from denotation to denotation. Some of our
further contributions are:

• In Section 3.1 we use simple flags as a basis to derive
the pattern in which CRDTs only consider the con-
current events to derive a value. These patterns are
common to causal CRDTs.

• Last-writer-wins CRDTs discussed in Section 3.2 share
a similar pattern with causal CRDTs, but resort to wall-
clock timestamps rather than causality information.

• We introduce two new primitive flags, the enable-once
and disable-once flags, which can be used to derive the
more common enable-wins and disable-wins flags, as
well as last-writer-wins variants of these flags.

• Section 4 defines set CRDTs in terms of Boolean flag
CRDTs.

• Finally, in Section 5 we define a number of simple
CRDTs which we use to obtain both concise and pre-
cise denotations for a large number of CRDTs by using
the previously mentioned higher-order denotations,
thereby demonstrating their power.

2 BACKGROUND

ACRDT [5] is a data type for replicated mutable state in a dis-
tributed system. Processes in the distributed system attempt
to mutate the state by performing operations on the data

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero

locally and transmitting the operations to other processes
when possible. The value of a CRDT instance can differ for
every process and depends on the operations received by
that process.1 However, two processes which have received
the same operations will have the same value for the CRDT
instance: a property called eventual consistency.

Since the value of a CRDT depends on the received opera-
tions, we formalize the behavior of a particular CRDT as a
function E → V , which we will call its denotation. The set E
is the set of events: values which uniquely identify operations
in time and space, while V is the set of values the CRDT can
assume. We assume every event e ∈ E has some properties
which will be useful for the definition of various types of
CRDTs later:

• e .i is a unique identifier for the event (e .i always
uniquely identifies e , for any possible set E),

• e .o is the operation performed,
• e .t is the local wall-clock time of the replica when it
originated the event,

• e .k is the set of events which were known at the origin
replica when the event occurred, either directly or
transitively (a process receiving an event e now also
“knows” e .k).

To allow us to be concise in our definitions we intro-
duce the following notation for comparing properties of
two uniquely identified events e and e ′:

• Timestamp comparison: e < e ′ = e .t < e ′.t.
• Causality relation: e ≺ e ′ = e .k ⊂ e ′.k. The causality
relation holds when one event e might have caused an-
other due to it being known by the process producing
e ′. If this is the case we say that e is in the causal past
of e ′. If neither e ≺ e ′ nor e ′ ≺ e then we call e and e ′
concurrent events.

3 LWW AND CAUSAL FLAGS

Boolean flags are arguably among the simplest replicated
data types. They have but two operations: enable and disable,
and as their name suggests, assume Boolean true or false
values. We will use variations of Boolean flags to deduce two
unifying patterns, one of which unifies “causal” replicated
data types, while the second unifies the “last-writer-wins”
data types.

1Instead of having a single value which depends on the received events,
CRDTs are usually defined with a number of queries on the CRDT. We
choose to forego these for presentation simplicity.

3.1 Causal flags

Take a close look at the following flag definitions:

EWFlag(E) = ∃e ∈ E · e .o = enable

∧ ∄e ′ ∈ E · e ′.o = disable ∧ e ≺ e ′

DWFlag(E) = ∃e ∈ E · e .o = enable

∧ ∀e ′ ∈ E · e ′.o = disable =⇒ e ′ ≺ e

These are the enable-wins and disable-wins flags, which
arbitrate a winner (either enable or disable) among the
concurrent operations. More precisely, they pick a winner
among events which are not known to be in the causal past
of another event. The similarities between these two flags
can be made more obvious by rewriting them using the set
of maximal events under the causality relation, produced by
a function max≺:

max≺(E) = { e ∈ E | ∄e ′ ∈ E · e ≺ e ′ }

EWFlag(E) = ∃e ∈ max≺(E) · e .o = enable

DWFlag(E) = ∃e ∈ max≺(E) · e .o = enable

∧ ∄e ′ ∈ max≺(E) · e ′.o = disable

Next we introduce two flag types, even simpler than the
EWFlag andDWFlag, that allow only a single (de)activation:
the enable-once and disable-once flags (EOFlag andDOFlag).
Notice how their definitions are very similar to the rewritten
versions of the previous flags, using E instead of max≺(E):

EOFlag(E) = ∃e ∈ E · e .o = enable

DOFlag(E) = ∃e ∈ E · e .o = enable

∧ ∄e ′ ∈ E · e ′.o = disable

3.2 Last-writer-wins flags

We now consider last-writer-wins flags, which rely on a
total order (<) on process-local wall-clock timestamps. These
flags only consider the set of known events with the highest
timestamp. If multiple such events exist, they once again
need to pick a winner among any conflicting operations. As
an example, take a look at the definition for the enable-wins
last-writer-wins flag:

LWWEWFlag(E) = ∃e ∈ E · e .o = enable

∧ ∄e ′ ∈ E · e ′.o = disable ∧ e < e ′

As we did for the EWFlag, we can rewrite it to reveal the
pattern in common with the EOFlag above, using the set of
maximal events, compared by the timestamp total order (<):

max<(E) = { e ∈ E | ∄e ′ ∈ E · e < e ′ }

LWWEWFlag(E) = ∃e ∈ max<(E) · e .o = enable

The same can be done for defining a LWWDWFlag.

Higher-Order Patterns in Replicated Data Types Conference’17, July 2017, Washington, DC, USA

3.3 Partial orderings on events

By now a shared pattern between causal CRDTs and last-
writer-wins CRDTs is emerging: both reduce the known set
of events to a subset, and then pass that subset on to some
other denotation to obtain a value. In both cases the subset
is the maximal subset based on an ordering according to
some specific property of events: the subset relation over the
“knows of” property for causal CRDTs, and the total order
over the timestamps for last-writer-wins.

We formalized this idea through a higher-order denotation
max<,∗ parametrised over a binary relation< and a property
∗ of events (typically t or k), which takes a denotationC and
produces a denotation from E to the result of applying C to
the maximal subset of events in E:

max<,∗(C) = E 7→ C({ e ∈ E | ∄e ′ ∈ E · e .∗ < e ′.∗})

3.4 Denoting LWW and Causal CRDTs

We can now precisely define the two previously mentioned
techniques. The Lww higher-order denotation supposes that
every event has a property twhich is the timestamp attached
to the event, and which can be compared to the timestamp of
another event. The Causal higher-order denotation assumes
a property k for the knows of set and the ⊂ relation, which
partially orders pairs of events based on whether or not they
are in the causal past of the other.

Lww(C) = max<,t(C)
Causal(C) = max⊂,k(C)

We can now simply define theEWFlag to beCausal(EOFlag)
and the LWWEWFlag to be Lww(EOFlag). The disable-
wins variants are similarly obtained from the DOFlag.

4 HOW SETS RELATE TO FLAGS

As shown in our introductory example, set data types have
⟨add,a⟩ and ⟨rmv,a⟩ operations that take a single element
value which is to be added or removed from the set respec-
tively. The difficulty of set CRDTs is that they need to decide
what happens when add and rmv operations apply to the
same element and possibly occur concurrently—a problem
to which various solutions have been proposed. Their defini-
tions in Figure 1 are as follows:

• the grow-only set (GSet) simply ignores removes,
• the two-phase set (2PSet) permanently removes ele-
ments if a remove operation for this element is known,

• while the add-wins and remove-wins sets (AWSet and
RWSet respectively) mediate between concurrent add
and rmv operations by letting either the add or the rmv
“win.”

All of these set types only differ in the arbitration mecha-
nism. We want to suggest the notion that a set CRDT can be

GSet(E) = { a | e ∈ E ∧ e .o = ⟨add,a⟩ }

2PSet(E) = { a | e ∈ E ∧ e .o = ⟨add,a⟩

∧ ∄e ′ ∈ E · e ′.o = ⟨rmv,a⟩ }

AWSet(E) = { a | e ∈ E ∧ e .o = ⟨add,a⟩

∧ ∄e ′ ∈ E · e ′.o = ⟨rmv,a⟩ ∧ e ≺ e ′ }

RWSet(E) = { a | e ∈ E ∧ e .o = ⟨add,a⟩

∧ ∀e ′ ∈ E · e ′.o = ⟨rmv,a⟩ =⇒ e ′ ≺ e }

Figure 1: Denotations for set CRDTs.

seen as votes on the presence or absence of a value in the set,
where presence or absence of a value is decided by grouping
the events pertaining to a particular value. This per-element
group of events then decides whether an element is in or
out.

We formalize this notion in the Set(C) function. The func-
tion takes a flag denotation C and produces a set denotation
which used C to determine whether a value is in the set. To
use C , for each a, all ⟨add,a⟩ and ⟨rmv,a⟩ operations of the
set data type are transformed to sets of enable and disable
flag operations, while preserving the event metadata:

Set(C) = E 7→ { a ∈ elems(E) | C(votes(E,a)) }
elems(E) = { a | e ∈ E ∧ (e .o = ⟨add,a⟩ ∨ e .o = ⟨rmv,a⟩) }

votes(E,a) = { e{o = enable} | e ∈ E ∧ e .o = ⟨add,a⟩ }

∪ { e{o = disable} | e ∈ E ∧ e .o = ⟨rmv,a⟩ }

4.1 Maps

As it happens, the concept of a CRDT which groups opera-
tions per value already exists in the literature. For example,
the observed-removes map from [4] is a map data type which
maps keys to instances of a value CRDT. The result is a map-
ping of all observed keys to values obtained by grouping the
events per key and passing these subsets of events to the
value denotation.

A map CRDT groups operations op for a specific CRDT
typeC under each key k through an ⟨apply,k,op⟩ operation,
and its value is a partial mapping from keys to values of C .
We define a map data type as taking a denotationC to which,
for each key k , we pass the result of grouping all events with
operation ⟨apply,k, op⟩ while unwrapping operation op:

Map(C) = E 7→ { k 7→ C(ops(k, E)) | k ∈ keys(E) }
keys(E) = { k | e ∈ E ∧ e .o = ⟨apply,k, op⟩ }

ops(k, E) = { e{o = op} | e ∈ E ∧ e .o = ⟨apply,k, op⟩ }

Conference’17, July 2017, Washington, DC, USA Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero

4.2 Transforming operations and values

If we were to pass a flag to the Map denotation we would
have an “almost-set”. Instead of ⟨add,a⟩ and ⟨rmv,a⟩ oper-
ations we have ⟨apply,a, enable⟩ and ⟨apply,a, disable⟩,
and instead of a set value we have a mapping.

To solve this problem we can simply transform the opera-
tions and values of an existing denotation to make another.
To change the value of a CRDT denotationC using a function
f from C-values to new values we can use straightforward
function composition, i.e. f ◦C . Adapting the operations of
a denotationC is more complicated: we need to intercept the
set of events and update the o property. For this we define
function mapo (f ,C) which takes an operator-transforming
function f and a denotation C , and translates operations
of input events to those of the existing denotation C , while
keeping all remaining properties of events unmodified:

mapo (f ,C) = E 7→ C({ e{o = f (e .o)} | e ∈ E })

4.3 Sets based on flags and maps

Now that we have a way to associate CRDTs to values, defin-
ing the behavior of set CRDTs is a trivial matter of translating
the ⟨add,a⟩ and ⟨rmv,a⟩ operations to ⟨apply,a, enable⟩
and ⟨apply,a, disable⟩ operations for the particular flag
denotation which decides whether a is present or absent
in the set. Through function composition and mapo we can
now redefine the Set(C) higher-order denotation as taking a
flag denotation C and using it as the value CRDT for a Map
higher-order denotation, translating operations and values
appropriately:

Set(C) = fv ◦mapo (fo,Map(C))
fo (⟨add,a⟩) = ⟨apply,a, enable⟩

fo (⟨rmv,a⟩) = ⟨apply,a, disable⟩

fv (v) = { a | (a 7→ True) ∈ v }

5 EXPRESSIVE POWER

To convince the reader of the expressive power of our Set,
Lww, and Causal higher-order denotations we now define a
large number of CRDTs using them. However, we first define
a fewmore primitive data types, namely a counter CRDT (the
PNCounter) and the last-writer-wins register (LWWRegis-
ter). This last data type is used to define the last-writer-wins
flag (LWWFlag). Using the LWWFlag, EOFlag, DOFlag,
Set, Lww, and Causal denotations we then define a complete
range of flag and set data types. Finally we introduce the
multi-value register, and show that it is in effect no different
from a grow-only set with Causal semantics.

5.1 PNFlag and PNCounter

An early solution for a set to which the same elements
could be added and removed multiple times was the positive-
negative set [1]. Since we know how to define sets from
any flag, we will first define the positive-negative flag, or
PNFlag.

This flag is enabled if there are more known enable oper-
ations than disable operations. The counting aspect is of
course very reminiscent of the well-known positive-negative
counter CRDT (PNCounter) which we will define first so
that we can reuse it.
The PNCounter counts inc and dec operations and is

integer-valued, where the value is the difference in number
between known increments and decrements of the counter:

PNCounter(E) = |{ e ∈ E | e .o = inc }|

− |{ e ∈ E | e .o = dec }|

Defining the PNFlag in terms of the PNCounter is easy:
all that needs to happen is for enable and disable opera-
tions to be translated to inc and dec operations, and for the
value of the PNCounter to be checked if it is positive:

PNFlag = (n 7→ n > 0) ◦mapo (f , PNCounter)

f (o) =
{
inc, if o = enable

dec, if o = disable

5.2 LWWRegister and LWWFlag

The last-writer-wins register is one of the first attempts at
implementing an eventually-consistent mutable value. It at-
taches a wall-clock timestamp to events to impose a total
order on them. This can be achieved by using combining
timestamps with a globally unique site-identifier for each
process, where the identifier arbitrates in case of identical
wall-clock timestamps. Register data types have ⟨write,a⟩
operations to set the register. The LWWRegister simply
picks the a with the highest timestamp, or has a ⊥ value if
no ⟨write,a⟩ operations are known. Assuming events have
a property T which totally orders events, we can define the
data type by using our max higher-order denotation defined
earlier:

LWWRegister(E) =
{
a, if max<,T(E) = { ⟨write,a⟩ }

⊥, otherwise

The last-writer-wins flag is simply a Boolean-valued reg-
ister, which we can define by transforming the values of a
LWWRegister:

LWWFlag = fv ◦mapo (fo, LWWRegister)
fo (a) = ⟨write,a⟩

fv (a) = (a = enable)

Higher-Order Patterns in Replicated Data Types Conference’17, July 2017, Washington, DC, USA

AWSet RWSet LWWAWSet LWWRWSet MVRegister

EWFlag DWFlag LWWEWFlag LWWDWFlag GSet 2PSet

EOFlag DOFlag

Set Set Set Set Causal

Causal Causal
Lww Lww

Set Set

Figure 2: Hierarchy of data types that derive from the two basic flags: EOFlag and DOFlag.

5.3 Causal and LWW flags

Below is the table of flags based on EOFlag and DOFlag,
wherein variations are obtained using Lww and Causal. This
list completes our catalog of flags which we use to define
our catalog of sets in the next section:

C Causal(C) Lww(C)
EOFlag EWFlag LWWEWFlag
DOFlag DWFlag LWWDWFlag

5.4 A full set of sets

Below is a table showing how all set data types found in
the literature can now be expressed based on the previously
defined flag data types and the Set higher-order denotation:

C Set(C)
EOFlag GSet
DOFlag 2PSet
PNFlag PNSet
LWWFlag LWWSet
LWWEWFlag LWWAWSet
LWWDWFlag LWWRWSet
EWFlag AWSet
DWFlag RWSet

Figure 2 presents the combined effect of all these transfor-
mations.

5.5 Multi-value register

A register data type which improves upon the LWWRegis-
ter by taking into account causality rather than relying on
totally ordered timestamps is the multi-value register orMV-
Register. Rather than having a single value, its value is the
set of values corresponding to the concurrent ⟨write,a⟩ op-
erations. To define an MVRegister, we can reuse the GSet,
since it is already set-valued.Making theGSet a causal CRDT
ensures that only the concurrent ⟨add,a⟩ operations are part

of the value of the set:

MVRegister = mapo (⟨write,a⟩ 7→ ⟨add,a⟩,Causal(GSet))

5.6 The Redis register

Finally, the Redis register is a causal last-writer-wins reg-
ister, where the last-writer-wins behavior is only used to
disambiguate in case multiple concurrent operations exist.
Defining it is as simple as passing the LWWRegister to the
Causal higher-order denotation:

RedisRegister = Causal(LWWRegister)

6 RELATEDWORK

We are not the first to suggest that more complex CRDTs
can be composed out of simpler ones [3], nor are we the first
to formalize the behavior of CRDTs [3, 6, 7]. The work on
composite data types by Gotsman and Yang [3] formalized
the use of CRDT-valued key-value stores with causal trans-
action support to build new CRDTs. It assumes a key-value
store has support for various primitive data types such as the
LWWSet, and models a programming language with causal
transactions to compose these primitives into more complex
CRDTs, such as a social graph data type. What distinguishes
our work is that we found structure in CRDTs which are
normally considered primitive, thereby reducing the num-
ber of primitive CRDTs (for this paper) to just the EOFlag,
DOFlag, PNCounter, and LWWRegister.

Our denotational framework captures the same generality
of the arbitration and visibility relations on events of [7] but
we forego the possibility of an operation on a CRDT instance
returning a value, and the possibily of multiple queries on a
data type. Instead of the latter we opted for a single value de-
rived from the set of known events at a replica. Both of these
modifications result in a slightly less general denotation but
one which we consider more naturally composable. Treating
the arbitration and visibility relations as embedded in the set

Conference’17, July 2017, Washington, DC, USA Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero

of events instead of as explicit arguments to the denotation
as in [7] results in a notation which is more succinct for our
purposes as well.
Gaducci et al. [6] also take a denotational look at CRDT

semantics, basing their analysis on causal graphs of events,
similarly to how our events form a causal graph through the
“knows of” property. Interestingly, the authors take a view
of CRDTs in which definitions for abstract data types such
as the set and register are refined using a conflict resolu-
tion policy to obtain concrete data types. This is akin to our
Set higher-order denotation which takes a flag to decide on
conflicts. However, unlike the flags passed to our Set deno-
tation, their conflict resolution mechanisms are not CRDTs
themselves.

Previous work on formalizing CRDTs has focused on prov-
ing the correctness of a CRDT implementation based on
formalized descriptions of CRDT semantics [7]. We on the
other hand do not consider implementation at all, but we
hope to have made future correctness efforts easier through
our work: an implementation could be based on semantic
patterns such as Lww and Set, and use data structures such
as Map to implement CRDTs, thereby following the same
structure as the formal definition.
Finally, we are not the first to attempt to catalog CRDTs

either [1], but as far as we know we are the first to do so
based on semantic patterns.

7 FUTUREWORK

This paper is a result of attempting to implement CRDTs in
multiple styles (state-based and operation-based) and notic-
ing similar patterns emerge. In future work we plan to de-
scribe how these patterns lend themselves well to compila-
tion if treated as a definition language for eventually consis-
tent data types. Along with the definition for such a language
we plan to publish how it can be compiled to efficient imple-
mentations in any current CRDT implementation strategy,
be it operation-based or state-based CRDTs.

ACKNOWLEDGMENTS

This work was partially supported by the European Union
H2020 LightKone project under grant 732505 (https://www.
lightkone.eu/). Adriaan Leijnse would like to acknowledge
Protocol Labs, Inc. for their graciously provided funding.

REFERENCES

[1] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A
comprehensive study of Convergent and Commutative Replicated Data
Types. Research Report RR-7506, Inria – Centre Paris-Rocquencourt ;
INRIA, January 2011.

[2] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making
operation-based crdts operation-based. In Kostas Magoutis and Pe-
ter Pietzuch, editors, Distributed Applications and Interoperable Systems,

pages 126–140, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
[3] Alexey Gotsman and Hongseok Yang. Composite replicated data types.

In Jan Vitek, editor, Programming Languages and Systems, pages 585–
609, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[4] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state
replicated data types. Journal of Parallel and Distributed Computing,
111:162 – 173, 2018.

[5] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Xavier Défago, Franck Petit, and
Vincent Villain, editors, Stabilization, Safety, and Security of Distributed
Systems, pages 386–400, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg.

[6] Fabio Gadducci, HernánMelgratti, and Christian Roldán. A denotational
view of replicated data types. In Jean-Marie Jacquet and Mieke Massink,
editors, Coordination Models and Languages, pages 138–156, Cham, 2017.
Springer International Publishing.

[7] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek
Zawirski. Replicated data types: Specification, verification, optimality.
SIGPLAN Not., 49(1):271–284, January 2014.

https://www.lightkone.eu/
https://www.lightkone.eu/

	Abstract
	1 Introduction
	2 Background
	3 LWW and Causal Flags
	3.1 Causal flags
	3.2 Last-writer-wins flags
	3.3 Partial orderings on events
	3.4 Denoting LWW and Causal CRDTs

	4 How sets relate to flags
	4.1 Maps
	4.2 Transforming operations and values
	4.3 Sets based on flags and maps

	5 Expressive power
	5.1 PNFlag and PNCounter
	5.2 LWWRegister and LWWFlag
	5.3 Causal and LWW flags
	5.4 A full set of sets
	5.5 Multi-value register
	5.6 The Redis register

	6 Related work
	7 Future work
	Acknowledgments
	References

